Universität Bern: Astronomischer Walzer enthüllt Sextett von Planeten

Ein internationales Team von Astronominnen und Astronomen, die die Weltraumsatelliten CHEOPS und TESS nutzen, hat ein wichtiges neues System von sechs Planeten entdeckt, die einen hellen Stern in einem harmonischen Rhythmus umkreisen. Diese seltene Eigenschaft ermöglichte es dem Team, die Planetenbahnen zu bestimmen, die die Forschenden zunächst vor ein Rätsel gestellt hatten. Beteiligt sind auch Mitglieder des NCCR PlanetS der Universität Bern und der Universität Genf. Eine Medienmitteilung der Universität Bern.

Quelle: Universität Bern 29. November 2023.

Wenn man eine Verbindung zwischen zwei benachbarten Planeten in regelmässigen Zeitabständen entlang ihrer Bahnen verfolgt, entsteht ein einzigartiges Muster für jedes Paar. Die sechs Planeten des Systems HD110067 erzeugen durch ihre Resonanzkette gemeinsam ein faszinierendes geometrisches Muster. (Grafik: CC BY-NC-SA 4.0, Thibaut Roger/NCCR PlanetS)
Wenn man eine Verbindung zwischen zwei benachbarten Planeten in regelmässigen Zeitabständen entlang ihrer Bahnen verfolgt, entsteht ein einzigartiges Muster für jedes Paar. Die sechs Planeten des Systems HD110067 erzeugen durch ihre Resonanzkette gemeinsam ein faszinierendes geometrisches Muster. (Grafik: CC BY-NC-SA 4.0, Thibaut Roger/NCCR PlanetS)

29. November 2023 – CHEOPS ist eine gemeinsame Mission der ESA und der Schweiz, unter der Leitung der Universität Bern in Zusammenarbeit mit der Universität Genf. Dank der Zusammenarbeit mit Forschenden, die mit Daten des NASA-Satelliten TESS arbeiten, konnte das internationale Team das Planetensystem aufdecken, welches den nahen Stern HD110067 umkreist. Eine Besonderheit dieses Systems ist seine Resonanzkette: Die Planeten umkreisen ihren Stern in perfekter Harmonie. Zum Forschungsteam gehören Forschende der Universität Bern und der Universität Genf, die auch Mitglieder des Nationalen Forschungsschwerpunkts (NCCR) PlanetS sind. Die Ergebnisse wurden soeben in Nature veröffentlicht.

Die Planeten im System HD110067 umkreisen den Stern wie in einem sehr präzisen Walzer. Wenn der Planet, der dem Stern am nächsten ist, drei volle Umkreisungen um ihn macht, macht der zweite Planet genau zwei in der gleichen Zeit. Dies nennt man eine 3:2-Resonanz. «Unter den über 5’000 entdeckten Exoplaneten, die andere Sterne als unsere Sonne umkreisen, sind Resonanzen nicht selten, ebenso wenig wie Systeme mit mehreren Planeten. Äusserst selten sind jedoch Systeme, bei denen sich die Resonanzen über eine so lange Kette von sechs Planeten erstrecken», betont Dr. Hugh Osborn, CHEOPS-Fellow an der Universität Bern, Leiter des an der Studie beteiligten CHEOPS-Beobachtungsprogramms und Mitautor der Studie. Genau dies ist der Fall bei HD110067, dessen Planeten eine so genannte «Resonanzkette» in aufeinanderfolgenden Paaren von 3:2, 3:2, 3:2, 4:3 und 4:3 Resonanzen bilden, was dazu führt, dass der nächstgelegene Planet sechs Umläufe um den Stern absolviert, während der äusserste Planet einen macht.

Ein scheinbar unlösbares Rätsel
Obwohl mehrere Planeten wegen ihren Transiten vor dem Stern bereits entdeckt worden waren, war die genaue Anordnung der Planeten zunächst unklar. Dank des präzisen Gravitationstanzes konnte das Forschungsteam jedoch das Rätsel von HD110067 lösen. Prof. Adrien Leleu von der Universität Genf, verantwortlich für die Analyse der Bahnresonanzen und Mitautor der Studie, erklärt: «Ein Transit findet statt, wenn ein Planet aus unserer Sicht vor seinem Stern vorbeizieht und dabei einen winzigen Teil des Sternenlichts blockiert, was zu einem scheinbaren Abfall seiner Helligkeit führt.»

Eine seltene Familie von sechs Exoplaneten wurde mit Hilfe der Cheops-Mission der ESA entdeckt. Die Planeten dieser Familie sind alle kleiner als Neptun und drehen sich in einem sehr präzisen Walzer um ihren Stern HD110067. Wenn der Planet, der dem Stern am nächsten ist, drei volle Umdrehungen um ihn macht, macht der zweite Planet genau zwei in der gleichen Zeit. Dies nennt man eine 3:2-Resonanz. Die sechs Planeten bilden eine Resonanzkette in Paaren von 3:2, 3:2, 3:2, 4:3 und 4:3, was dazu führt, dass der nächstgelegene Planet sechs Umläufe vollzieht, während der äusserste Planet einen vollzieht. Cheops bestätigte die Umlaufzeit des dritten Planeten in diesem System, was der Schlüssel zum Entschlüsseln des Rhythmus des gesamten Systems war. Dies ist das zweite Planetensystem in Orbitalresonanz, zu dessen Entdeckung Cheops beigetragen hat. Das erste System trägt den Namen TOI-178. (Grafik: ESA)
Eine seltene Familie von sechs Exoplaneten wurde mit Hilfe der Cheops-Mission der ESA entdeckt. Die Planeten dieser Familie sind alle kleiner als Neptun und drehen sich in einem sehr präzisen Walzer um ihren Stern HD110067. Wenn der Planet, der dem Stern am nächsten ist, drei volle Umdrehungen um ihn macht, macht der zweite Planet genau zwei in der gleichen Zeit. Dies nennt man eine 3:2-Resonanz. Die sechs Planeten bilden eine Resonanzkette in Paaren von 3:2, 3:2, 3:2, 4:3 und 4:3, was dazu führt, dass der nächstgelegene Planet sechs Umläufe vollzieht, während der äusserste Planet einen vollzieht. Cheops bestätigte die Umlaufzeit des dritten Planeten in diesem System, was der Schlüssel zum Entschlüsseln des Rhythmus des gesamten Systems war. Dies ist das zweite Planetensystem in Orbitalresonanz, zu dessen Entdeckung Cheops beigetragen hat. Das erste System trägt den Namen TOI-178. (Grafik: ESA)

Aus den ersten Beobachtungen des NASA-Satelliten TESS ging hervor, dass die beiden inneren Planeten ‘b’ und ‘c’ eine Umlaufzeit von 9 beziehungsweise 14 Tagen haben. Für die anderen vier entdeckten Planeten konnten jedoch keine Schlussfolgerungen gezogen werden. Zwei von ihnen wurden einmal im Jahr 2020 und einmal im Jahr 2022 beobachtet, also gab es eine grosse Lücke in den Daten von zwei Jahren. Die beiden anderen Planeten passierten den Stern nur einmal im Jahr 2022.

Die Lösung des Rätsels um diese vier zusätzlichen Planeten zeichnete sich schliesslich dank Beobachtungen mit dem Weltraumteleskop CHEOPS ab. Während TESS darauf abzielt, den gesamten Himmel nach und nach abzusuchen, um kurzperiodische Exoplaneten zu finden, solche also, die nahe um ihren Stern kreisen und kurze Umlaufzeiten haben, ist CHEOPS eine zielgerichtete Mission, die sich mit äusserster Präzision auf jeweils einen einzelnen Stern konzentriert. «Mit unseren CHEOPS-Beobachtungen konnten wir feststellen, dass die Periode des Planeten ‘d’ 20,5 Tage beträgt. Ausserdem konnten wir mehrere Möglichkeiten für die verbleibenden drei äusseren Planeten ‚e‘, ‚f‘ und ‚g‘ ausschliessen“, erklärt Osborn.

Vorhersage des präzisen Walzers der Planeten
In diesem Moment erkannte das Team, dass die drei inneren Planeten von HD110067 in einer präzisen 3:2, 3:2-Resonanzkette tanzen: Der innerste Planet umkreist den Stern neunmal, der zweite sechsmal und der dritte viermal.

Das Team zog dann die Möglichkeit in Betracht, dass die drei anderen Planeten ebenfalls Teil der Resonanzkette sein könnten. «Dies führte zu Dutzenden von Möglichkeiten für ihre Umlaufzeit», erklärt Leleu, «aber durch die Kombination der vorhandenen Beobachtungsdaten von TESS und CHEOPS mit unserem Modell der Gravitationswechselwirkungen zwischen den Planeten konnten wir alle Lösungen bis auf eine ausschliessen: die 3:2, 3:2, 3:2, 4:3, 4:3-Kette.» Die Forschenden konnten daher vorhersagen, dass die drei äusseren Planeten (‚e‘, ‚f‘ und ‚g‘) Umlaufzeiten von 31, 41 und 55 Tagen haben.

Diese Vorhersage ermöglichte die Planung von Beobachtungen mit einer Reihe von bodengestützten Teleskopen. Weitere Transits des Planeten ‚f‘ wurden beobachtet, wobei sich herausstellte, dass er sich genau dort befand, wo die Theorie ihn aufgrund der Resonanzkette vorausgesagt hatte. Eine erneute Analyse der TESS-Daten ergab schließlich zwei versteckte Transits, jeweils einen der Planeten ‘f’ und ‘g’ genau zu den Zeiten, die von den Vorhersagen erwartet wurden, was die Perioden der sechs Planeten bestätigte. Weitere CHEOPS-Beobachtungen der einzelnen Planeten, insbesondere des Planeten ‘e’, sind für die nahe Zukunft geplant.

Massstabsgetreue Animation mit Ton der Bahnen der sechs Resonanzplaneten im System HD110067. Die Tonhöhe der Noten, die beim Durchgang jedes Planeten gespielt werden, entspricht der resonanten Änderung der Umlauffrequenzen zwischen den einzelnen Planeten. Die relativen Grössen der Planeten sind genau, obwohl ihre wahre Grösse im Vergleich zum Stern viel kleiner ist. (Animation: Dr. Hugh Osborn, Universität Bern)

Ein Schlüsselsystem für die Zukunft
Von den wenigen bisher gefundenen Resonanzkettensystemen hat CHEOPS nicht nur zum Verständnis von HD110067, sondern auch von TOI-178 beigetragen. Ein weiteres bekanntes Beispiel für ein System mit Resonanzketten ist das System TRAPPIST-1, welches sieben Gesteinsplaneten beherbergt. Allerdings ist TRAPPIST-1 ein kleiner und unglaublich schwacher Stern, was zusätzliche Beobachtungen sehr schwierig macht. HD110067 hingegen ist mehr als 50-mal heller als TRAPPIST-1.

«Die Tatsache, dass die Planeten im System HD110067 mit der Transitmethode entdeckt wurden, ist entscheidend. Während sie vor dem Stern vorbeiziehen, wird das Licht auch durch die Planetenatmosphären gefiltert», betont Jo Ann Egger, Doktorandin an der Universität Bern, die die Zusammensetzung der Planeten anhand der CHEOPS-Daten berechnet hat und die Mitautorin der Studie ist. Diese Eigenschaft erlaubt es den Forschenden, die chemische Zusammensetzung und andere Eigenschaften der Atmosphären zu bestimmen.

Da viel Licht benötigt wird, sind der helle Stern HD110067 und die ihn umkreisenden Planeten ein ideales Ziel für weitere Studien zur Charakterisierung der Planetenatmosphären. «Die Sub-Neptun-Planeten des Systems HD110067 scheinen eine geringe Masse zu haben, was darauf hindeutet, dass sie möglicherweise gas- oder wasserreich sind. Zukünftige Beobachtungen dieser Planetenatmosphären, zum Beispiel mit dem James Webb Space Telescope (JWST), könnten Aufschluss darüber geben, ob die Planeten felsige oder wasserreiche innere Strukturen aufweisen», so Egger abschliessend.

Publikation:
“A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067” by R. Luque et al., veröffentlicht in Nature am 29. November 2023.
doi.org/10.1038/s41586-023-06692-3
https://www.nature.com/articles/s41586-023-06692-3

Diskutieren Sie mit im Raumcon-Forum:

Nach oben scrollen