Simulation

Illustration eines Modells, wie sich aus dem Staub einer protoplanetaren Scheibe heraus auch schnell Gasriesen wie Jupiter, Saturn oder Uranus im Sonnensystem bilden konnten und dann Staub in Bereiche außerhalb ihrer Umlaufbahn trieben. (Bild: LMU/Thomas Zankl/crushed eyes media)

MPS: Schlüssel zur schnellen Planetenbildung

In jungen Planetensystemen entstehen Gasriesen effizienter und schneller als bisher angenommen. Das zeigen neue Computersimulationen. Eine Pressemitteilung des Max-Planck-Instituts für Sonnensystemforschung. Quelle: Max-Planck-Institut für Sonnensystemforschung 2. August 2024. 2. August 2024 – Ringförmige Störungen in Scheiben aus Gas und Staub, die um noch junge Sterne kreisen, können den Anstoß geben, dass sich gleich mehrere Gasriesen […]

MPS: Schlüssel zur schnellen Planetenbildung Weiterlesen »

Seine farblich klar abgesetzten Sturmbänder verleihen dem Jupiter eine Art Streifenmuster. Innerhalb der Sturmbänder jagen die Winde in Orkanstärke um den Planeten. Nur in der Nähe der Pole wehen sie etwas ruhiger. (Bild: Science: NASA/ESA/Amy Simon (NASA-GSFC)/Michael H. Wong (UC Berkeley), Image Processing: Joseph DePasquale (STScI))

Jupiter: Orkane bis in 2000 Kilometern Tiefe

Neue Simulationen ermöglichen einen „rechnerischen Blick“ unter die Wolkendecke des Jupiters. Dort toben offenbar heftige Orkane. Eine Pressemitteilung des Max-Planck-Instituts für Sonnensystemforschung. Quelle: Max-Planck-Institut für Sonnensystemforschung 10. Juni 2024. 10. Juni 2024 – Die Orkane, die in streifenartigen Sturmbändern über den Jupiter rasen, setzen sich weit ins Innere seiner Atmosphäre fort. Erst in einer Tiefe

Jupiter: Orkane bis in 2000 Kilometern Tiefe Weiterlesen »

Stern-bildende Region Messier 78. (Bild: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi)

RWTH: Auf dem Weg zur präzisesten Karte unseres Universums

Die Beobachtungen des Euclid-Teleskops zeigen die Entdeckung frei schwebender, neu entstandener Planeten, einer neuen Zwerggalaxie und vieles mehr. RWTH-Physiker sind an dem Projekt beteiligt. Eine Pressemitteilung der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen. Quelle: RWTH 23. Mai 2024. 23. Mai 2024 – Das Euclid-Konsortium veröffentlicht heute die ersten wissenschaftliche Arbeiten, die auf Beobachtungen des Euclid-Teleskops basieren.

RWTH: Auf dem Weg zur präzisesten Karte unseres Universums Weiterlesen »

Künsterlische Darstellung des riesigen und langsamen Einschlags auf Pluto, der zur herzförmigen Struktur auf dessen Oberfläche führte. (Grafik: Universität Bern, Illustration Thibaut Roger)

Universität Bern: Wie Pluto zu seinem Herzen kam

Ein internationales Team von Astrophysikerinnen und Astrophysikern unter der Leitung der Universität Bern und Mitgliedern des Nationalen Forschungsschwerpunkts (NFS) PlanetS hat das Rätsel gelöst, wie Pluto zu einer riesigen herzförmigen Struktur auf seiner Oberfläche gekommen ist. Eine Medienmitteilung der Universität Bern. Quelle: Universität Bern 15. April 2024. 15. April 2024 – Das Forschungsteam ist das

Universität Bern: Wie Pluto zu seinem Herzen kam Weiterlesen »

Dreidimensionale Visualisierung der Schwingungen mit maximalen Geschwindigkeiten in hohen Breitengraden der Sonne. Schnappschuss der Stromlinien der langperiodischen Oszillationen in hohen Breiten in der Konvektionszone. Die roten und blauen Farben bezeichnen die prograden (mit der Rotation übereinstimmenden) bzw. retrograden (der Rotation entgegengesetzten) zonalen Strömungen. (Grafik: MPS / Y. Bekki)

MPS: Langperiodische Schwingungen steuern die differentielle Rotation der Sonne

Langperiodische Schwingungen in hohen Breitengraden stellen einen Rückkopplungsmechanismus dar, der die differentielle Rotation der Sonne zwischen Pol und Äquator begrenzt. Eine Pressemitteilung des Max-Planck-Instituts für Sonnensystemforschung. Quelle: Max-Planck-Institut für Sonnensystemforschung 27. März 2024. 27. März 2024 – Das Innere der Sonne dreht sich nicht in allen Breitengraden mit der gleichen Geschwindigkeit. Der physikalische Ursprung dieser

MPS: Langperiodische Schwingungen steuern die differentielle Rotation der Sonne Weiterlesen »

Airbus-, DLR- und BTU-Wissenschaftler*innen im Reinraum von Airbus Defence and Space (ADS) in Friedrichshafen vor den Hardwareteilen des AtmoFlow-Experiments. Aus dem BTU-Team mit dabei: Dr. Peter Szabo (3.v.l.), Simon Kühne (4.v.l.), Dr. Vadim Travnikov (6.v.l.), Peter Haun (6.v.r.), Prof. Christoph Egbers (5.v.r) und Yann Gaillard-Röpke (4.v.r.), (Foto: ADS/Dr. Astrid Adrian)

BTU-Experiment erneut für Einsatz im Weltraum in Vorbereitung

Mit einem einzigartigen Experiment, das ausschließlich in der Schwerelosigkeit durchgeführt werden kann, wollen BTU-Forschende die Auswirkungen der Klimaerwärmung auf die Polkappen der Erde und die damit verbundenen Veränderungen in Luft- und Meeresströmungen untersuchen. Eine Pressemitteilung der Brandenburgischen Technischen Universität Cottbus-Senftenberg (BTU). Quelle: BTU 18. März 2024. 18. März 2024 – Im Februar 2024 startete die

BTU-Experiment erneut für Einsatz im Weltraum in Vorbereitung Weiterlesen »

Ein "digitaler Zwilling" der Erde erlaubt, treffsichere Vorhersagen zu errechnen. (Grafik: TU Wien)

TU Wien: Katastrophen werden vorhersagbar – mit Weltraumdaten

Viele Menschen werden unvorbereitet von Überflutungen oder Hangrutschungen getroffen. Ein ESA-Projekt mit Beteiligung der TU Wien macht den Wasserkreislauf nun berechenbar. Eine Presseaussendung der Technischen Universität Wien. Quelle: Technische Universität Wien 5. März 2024. 5. März 2024 – Der Klimawandel verändert den Wasserkreislauf – aber wie? Leider lässt sich das nicht in eine einfache, global

TU Wien: Katastrophen werden vorhersagbar – mit Weltraumdaten Weiterlesen »

Ein Asteroid zerbricht und produziert dabei Staub, der auch auf die Erde gelangt - künstlerische Darstellung. (Bild: NASA / JPL-​Caltech)

ETH Zürich: Verdanken wir das Leben auf der Erde dem kosmischen Staub?

Staub aus dem All, der sich in Schmelzlöchern von Eisschilden angesammelt hat, könnte in der Frühzeit der Erde die präbiotische Chemie in Gang gesetzt und am Laufen gehalten haben. Mit einem Computermodell haben Forschende der ETH Zürich und der Universität Cambridge dieses Szenario überprüft. Eine Pressemitteilung der ETH Zürich. Quelle: ETH Zürich 29. Februar 2024.

ETH Zürich: Verdanken wir das Leben auf der Erde dem kosmischen Staub? Weiterlesen »

Numerische Simulation des entstehenden Auswurfmaterials zweier verschmelzender Neutronensterne. Rote Farben beziehen sich auf ausgeworfenes Material mit einem hohen Anteil an Neutronen, wohingegen blaues Material einen hohen Anteil an Protonen enthält. (Bild: Ivan Markin (Uni Potsdam))

UP: Neutronensterne auf vielen Kanälen parallel untersuchen

Ein internationales Forschungsteam unter Beteiligung der Universität Potsdam und des Max-Planck-Instituts für Gravitationsphysik hat eine Methode entwickelt, um die meisten beobachtbaren Signale im Zusammenhang mit Neutronensternverschmelzungen gleichzeitig zu untersuchen. Eine Medieninformation der Universität Potsdam (UP). Quelle: Universität Potsdam 20. Dezember 2023. 20. Dezember 2023 – Es gelang zum ersten Mal, die abgestrahlten Gravitationswellen, die Kilonova

UP: Neutronensterne auf vielen Kanälen parallel untersuchen Weiterlesen »

Simulation der kosmischen Strahlung, die durch ein Hintergrundplasma strömt und eine Plasmainstabilität anregt. Dargestellt ist die Verteilung der Hintergrundteilchen, die auf die strömende kosmische Strahlung im Phasenraum reagieren, der durch Teilchen-Position (horizontale Achse) und Geschwindigkeit (vertikale Achse) aufgespannt wird. Die Farben visualisieren die Anzahldichte und die Löcher im Phasenraum sind Ausdruck der hochdynamischen Natur der Instabilität, die geordnete Bewegungen in Zufallsbewegungen umwandelt. (Bild: Shalaby/AIP)

Plasmainstabilität gibt Aufschluss über Ursprung der kosmischen Strahlung

Forschende des Leibniz-Instituts für Astrophysik Potsdam (AIP) haben eine neue Plasmainstabilität entdeckt, die unser Verständnis des Ursprungs der kosmischen Strahlung und ihrer dynamischen Auswirkungen auf Galaxien zu revolutionieren verspricht. Eine Pressemitteilung des AIP. Quelle: AIP 12. Dezember 2023. 12. Dezember 2023 – Zu Beginn des letzten Jahrhunderts entdeckte Victor Hess ein neues Phänomen, die kosmische

Plasmainstabilität gibt Aufschluss über Ursprung der kosmischen Strahlung Weiterlesen »

Ultrakalte Quantengase aus dipolaren Atomen bilden eine Plattform für die Simulation von Vorgängen im Inneren von Neutronensternen. (Grafik: Elena Poli)

Mit Quantensimulation Rotationsanomalien von Neutronensternen entschlüsseln

Unter der Leitung von Francesca Ferlaino und Massimo Mannarelli untersuchen Quantenphysiker und Astrophysiker gemeinsam die plötzliche Änderung der Rotationsgeschwindigkeit von Neutronensternen. Eine Medieninformation der Universität Innsbruck. Quelle: Universität Innsbruck 5. Dezember 2023. 5. Dezember 2023 – Es ist gelungen, das rätselhafte Phänomen mit ultrakalten dipolaren Atomen numerisch zu simulieren. Die enge Verbindung von Quantenmechanik und

Mit Quantensimulation Rotationsanomalien von Neutronensternen entschlüsseln Weiterlesen »

John Bulava hat an der Fakultät für Physik und Astronomie die Professur für Theoretische Hadronenphysik inne. (Foto: RUB, Marquard)

RUB: Teilcheninteraktionen in Neutronensternen verstehen

Neutronensterne zählen zu den dichtesten Objekten des Universums. Die Vorgänge in ihrem Inneren geben der Teilchenphysik Rätsel auf. Beobachtungen und Theorie passen nicht zueinander. Schuld daran könnte ein mangelndes Verständnis der sogenannten Hyperonen sein – Teilchen, die einen besonderen Bestandteil, das Strange-Quark, besitzen. Sie sind instabil und daher schwer zu untersuchen. Prof. Dr. John Bulava

RUB: Teilcheninteraktionen in Neutronensternen verstehen Weiterlesen »

Das Bild zeigt die Materieverteilung im All - (blau; die gelben Punkte stehen für einzelne Galaxien). Die Milchstraße (grün) liegt in einem Gebiet mit wenig Materie. Die Galaxien in der Blase bewegen sich in Richtung der höheren Materiedichten (rote Pfeile). Innerhalb der Blase scheint sich das Universum daher schneller auszudehnen. (Bild: AG Kroupa/Uni Bonn)

Uni Bonn: Neue mögliche Erklärung für die Hubble-Spannung

Studie der Universitäten Bonn und St. Andrews schlägt Lösung für eines der großen Rätsel der Kosmologie vor. Eine Pressemitteilung der Universität Bonn. Quelle: Universität Bonn 1. Dezember 2023. 1. Dezember 2023 – Das Weltall dehnt sich aus. Wie schnell es das tut, wird durch die sogenannte Hubble-Lemaitre-Konstante beschrieben. Doch gibt es einen Streit um die

Uni Bonn: Neue mögliche Erklärung für die Hubble-Spannung Weiterlesen »

Dr. Maria Werhahn. (Bild: privat)

Carl-Ramsauer-Preis für Maria Werhahn

Dr. Maria Werhahn erhält den Carl-Ramsauer-Preis 2023 der Physikalischen Gesellschaft zu Berlin e.V. für ihre hervorragende Doktorarbeit, die sie am Leibniz-Institut für Astrophysik Potsdam (AIP) und der Universität Potsdam anfertigte. Eine Pressemitteilung des AIP. Quelle: AIP 22. November 2023. 22. November 2023 – Die preisgekrönte Dissertation mit dem Titel „Simulating Galaxy Evolution with Cosmic Rays:

Carl-Ramsauer-Preis für Maria Werhahn Weiterlesen »

Das Bild zeigt einen simulierten Sternhaufen, wie er in den Dragon-II-Simulationen berechnet wurde. Die orangefarbenen und gelben Punkte stellen sonnenähnliche Sterne dar, während die blauen Punkte Sterne mit der 20- bis 300-fachen Masse der Sonne anzeigen. Das große weiße Objekt in der Mitte verkörpert einen Stern mit einer Masse von etwa 350 Sonnenmassen, der in Kürze kollabieren und ein schwarzes Loch mittlerer Masse bilden wird. (Bild: M. Arca Sedda (GSSI))

MPIA: Die Wiege schwarzer Löcher

Einer Forschungsgruppe gelang die Entschlüsselung der Entstehungsmechanismen der geheimnisvollen schwarzen Löcher mittlerer Masse. Sie könnten das Bindeglied zwischen ihren kleineren Verwandten, den stellaren schwarzen Löchern, und den supermassereichen Riesen darstellen, die die Zentren der Galaxien bevölkern. Eine Pressemitteilung des Max-Planck-Instituts für Astronomie (MPIA). Quelle: Max-Planck-Institut für Astronomie 27. September 2023. 27. September 2023 – Der

MPIA: Die Wiege schwarzer Löcher Weiterlesen »

Nach oben scrollen