Messung einer nuklearen Schlüsselreaktion liefert unabhängige Bestätigung für wichtigen Parameter der Kosmologie. Eine Pressemitteilung des HZDR – Helmholtz-Zentrum Dresden-Rossendorf.
Quelle: HZDR – Helmholtz-Zentrum Dresden-Rossendorf.
Die Wissenschaftler*innen im Bereich der nuklearen Astrophysik wollen die Entstehung der Elemente im Universum seit Anbeginn der Zeit erklären. Die dabei erdachten Modelle fußen auf Kenngrößen, die sie aus Messdaten gewinnen, etwa die kosmische Dichte der aus Atomen aufgebauten Materie oder die Häufigkeit der Elemente im All. Eine wichtige Rolle spielen hier die Reaktionen leichter Atomkerne miteinander, unmittelbar nach dem Urknall. Ein Team unter führender Beteiligung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) hat nun, wie das Fachmagazin Nature (DOI: 10.1038/s41586-020-2878-4) berichtet, eine der zentralen Reaktionen mit bisher unerreichter Genauigkeit untersucht: die Fusion eines Wasserstoffkerns, dem Proton, mit dem Kern des Wasserstoffisotops Deuterium.
Die Astrophysiker*innen aus Italien, Deutschland, Schottland und Ungarn haben am Laboratory for Underground Nuclear Astrophysics (LUNA) am Gran Sasso d’Italia diese Schlüsselreaktion der sogenannten primordialen Nukleosynthese untersucht. „So bezeichnen wir die Abfolge von Kernaufbaureaktionen, die zur Entstehung der leichtesten chemischen Elemente geführt hat, nur Sekunden nach dem Urknall. Bei dem von uns konkret untersuchten Prozess wird der Kern des Wasserstoffisotops Deuterium mit einem Proton beschossen. Dabei entsteht Helium-3, ein stabiles Helium-Isotop, sowie ein Gammaquant, das wir mit unserem Reinstgermanium-Detektor nachweisen können“, erläutert Doktorand Klaus Stöckel vom Institut für Strahlenphysik am HZDR das experimentelle Vorgehen.
Die Forscher*innen waren vor allem am sogenannten Wirkungsquerschnitt der Reaktion interessiert, der Auskunft über die Wahrscheinlichkeit ihres Auftretens gibt. Diesen Parameter haben sie nun mit beispielloser Präzision bestimmt. Zuvor hatte es nur wenige Daten im Bereich der Teilchenenergien gegeben, die für Reaktionen kurz nach dem Urknall relevant sind. Außerdem war die dabei erzielte Messunsicherheit zu hoch, um bei der Modellierung der Prozesse verlässlich genutzt werden zu können.
Primordiales Nuklearzeitalter: Synthese-Kickstart im Ur-Kosmos
Protonen und Neutronen, die Bausteine aller chemischen Elemente, entstanden in den ersten Sekundenbruchteilen nach dem Urknall. Als sich das Universum weiter ausdehnte und dabei abkühlte, bildete sich zunächst Deuterium, schwerer Wasserstoff. In weiteren Reaktionen entstanden andere Atomkerne wie Helium-3 und Helium-4. Drei Minuten nach dem Urknall bestand das Universum aus rund 75 Prozent Wasserstoff und 25 Prozent Helium-4, mit Spuren anderer leichter Elemente.
An diesem Verhältnis hat sich im Wesentlichen bis heute nichts geändert. Die erstaunlich genaue Vorhersage dieser Verteilung durch die Theorie der primordialen Nukleosynthese ist gleichzeitig eines der stärksten Argumente für ihre Richtigkeit: Sie bildet heute eins der Fundamente des Standardmodells der Kosmologie, das unsere Vorstellungen von der Entwicklung des Universums vereint.
In der kosmischen Stille des Gran Sasso
Um Wirkungsquerschnitte von Urknall-relevanten Kernreaktionen genau messen zu können, benötigen die Astrophysiker*innen eine effiziente Abschirmung vor kosmischer Strahlung, deren Hintergrundsignale die Ergebnisse verfälschen können. Das gelingt im unterirdischen LUNA-Labor am Gran Sasso. Das sich 1400 Meter über der Einrichtung auftürmende Sedimentgestein der Abruzzen bietet ideale Bedingungen für das Experiment: Hier können die Wissenschaftler*innen ungestört von äußeren Strahlungseinflüssen Prozesse nachstellen, die während der ersten Kernverschmelzungen des Universums abliefen.
Das LUNA-Team hat mit seinen Messungen die Uhr bis auf wenige Minuten nach der Geburt unseres Universums zurückgedreht: „Die Menge des gebildeten primordialen Deuteriums wird hauptsächlich durch die Fusionsreaktion bestimmt, die wir hier in ausgedehnten Messkampagnen untersucht haben. Die ermittelte Dichte der gewöhnlichen, aus Protonen und Neutronen bestehenden Materie stimmt hervorragend mit Werten überein, die Astrophysikerinnen und Astrophysiker zuvor aus ganz andersartigen Methoden ableiten konnten, wie etwa aus der Vermessung der kosmischen Hintergrundstrahlung oder der Untersuchung der Deuterium-Häufigkeit in bestimmten Wasserstoffgaswolken“, fasst HZDR-Projektleiter Dr. Daniel Bemmerer zusammen.
Die Ergebnisse der Studie ermöglichen es den Forscher*innen nun, eine genaue Bestimmung der Dichte der gewöhnlichen Materie im Universum vorzunehmen, die alles umfasst, was wir kennen – einschließlich des Lebens auf unserem Planeten. Laut aktuellem Wissensstand macht gewöhnliche Materie demnach fünf Prozent des Gesamtuniversums aus – die verbleibenden 95 Prozent werden unsichtbarer dunkler Materie und dunkler Energie zugerechnet.
Das Team wird seine wissenschaftliche Tätigkeit im nächsten Jahrzehnt mit dem LUNA-MV-Projekt fortsetzen, das sich auf die Untersuchung von Schlüsselreaktionen konzentriert, die für das Verständnis der chemischen Zusammensetzung des Universums und der Nukleosynthese der schweren Elemente wichtig sind. Die Wissenschaftler*innen setzen dabei auch auf komplementäre Experimente im Untertagelabor Felsenkeller, das vom HZDR und der TU Dresden gemeinsam betrieben wird.
Die Arbeiten wurden durch die Deutsche Forschungsgemeinschaft gefördert.
Text: Dr. Bernd Schröder
Publikation:
V. Mossa, K. Stöckel, F. Cavanna, F. Ferraro, M. Aliotta, F. Barile, D. Bemmerer, A. Best, A. Boeltzig, C. Broggini, C. G. Bruno, A. Caciolli, T. Chillery, G. F. Ciani, P. Corvisiero, L. Csedreki, T. Davinson, R. Depalo, A. Di Leva, Z. Elekes, E. M. Fiore, A. Formicola, Zs. Fülöp, G. Gervino, A. Guglielmetti, C. Gustavino, G. Gyürky, G. Imbriani, M. Junker, A. Kievsky, I. Kochanek, M. Lugaro, L. E. Marcucci, G. Mangano, P. Marigo, E. Masha, R. Menegazzo, F. R. Pantaleo, V. Paticchio, R. Perrino, D. Piatti, O. Pisanti, P. Prati, L. Schiavulli, O. Straniero, T. Szücs, M. P. Takács, D. Trezzi, M. Viviani, S. Zavatarelli, The baryon density of the Universe from an improved rate of deuterium burning, in Nature, 2020 (DOI:10.1038/s41586-020-2878-4)
Diskutieren Sie mit im Raumcon-Forum: