ETH-Forschende haben mit einer neuen Messtechnik die Gravitationskonstante G neu bestimmt. Obwohl der gemessene Wert noch eine hohe Unsicherheit aufweist, hat die Methode ein großes Potenzial, um eines der fundamentalsten Naturgesetze zu überprüfen. Eine Pressemitteilung der ETH Zürich.
Quelle: ETH Zürich 12. Juli 2022.
12. Juli 2022 – Die Gravitationskonstante G bestimmt die Stärke der Schwerkraft. Diese sorgt dafür, dass Äpfel zu Boden fallen, oder dass die Erde um die Sonne kreist. Isaac Newton hat vor über 300 Jahren das Gravitationsgesetz formuliert, in dem diese Naturkonstante vorkommt. Sie lässt sich nicht mathematisch herleiten, sondern nur experimentell ermitteln.
Obwohl Wissenschaftler*innen im Lauf der Zeit zahlreiche Experimente durchgeführt haben, um den Wert der Gravitationskonstante zu bestimmen, befriedigt der derzeit gültige Wert die Fachwelt nicht. Er ist noch immer ungenauer als der Wert jeder anderen fundamentalen Naturkonstante, zu denen etwa die Lichtgeschwindigkeit im Vakuum gehört.
Dass die Schwerkraft nur äußerst schwer zu fassen ist, hat damit zu tun, dass sie nur sehr schwach ist und sich auch nicht abschirmen lässt: Misst man die Schwerkraft zwischen zwei Körpern, misst man auch die Wirkung aller anderen Körper der Welt mit.
«Die einzige Möglichkeit diese Situation aufzulösen, besteht darin, die Gravitationskonstante mit möglichst vielen verschiedenen Methoden zu ermitteln», erklärt Jürg Dual, Professor am Departement Maschinenbau und Verfahrenstechnik der ETH Zürich. Er und seine Mitarbeitenden stellen nun in der Fachzeitschrift «Nature Physics» ein neues Experiment vor, mit dem sie die Gravitationskonstante erneut bestimmt haben.
Neuartiges Experiment in alter Festung
Um Störquellen möglichst auszuschließen, baute Duals Team die Messeinrichtung in der ehemaligen Festung Furggels bei Pfäfers ob Bad Ragaz (Schweiz) auf. Der Versuchsaufbau besteht aus zwei in Vakuumkammern aufgehängten Balken. Den einen versetzen die Forschenden in Vibration. Durch die Gravitationskopplung begann auch der zweite Stab minimal (im Pikometerbereich – also ein Billionstel Meter) zu vibrieren. Die ETH-Forschenden maßen schließlich mit Lasermessgeräten die Bewegung der beiden vibrierenden Balken und die Messung dieses dynamischen Effekts erlaubte Rückschlüsse auf die Größe der Gravitationskonstante.
Der Wert, den die Forschenden auf diese Weise ermittelten, liegt um 2,2 Prozent höher als die derzeit offizielle Größe, welche das Committee on Data for Science and Technology angibt. Allerdings ist der neue Wert mit einer großen Unsicherheit behaftet, räumt Dual ein: «Für einen zuverlässigen Wert muss diese Unsicherheit noch deutlich reduziert werden. Wir sind bereits daran, Messungen mit einem leicht veränderten Versuchsaufbau durchzuführen, um die Konstante G noch genauer bestimmen zu können. Erste Resultate sind verfügbar, aber noch nicht publiziert. «Wir sind auf dem richtigen Weg», bestätigt Dual.
Das Experiment läuft ferngesteuert von Zürich aus. Das reduziert Störungen durch Personal, das vor Ort anwesend ist, auf ein Minimum. Die Forschenden können die Messdaten jederzeit in Echtzeit anschauen.
Einblick in die Geschichte des Universums
Für ihn liegt der Vorteil der neuen Methode darin, dass die Schwerkraft über die vibrierenden Stäbe dynamisch gemessen werde. «Bei dynamischen Messungen spielt es im Gegensatz zu statischen keine Rolle, dass sich die von anderen Körpern wirkende Schwerkraft nicht abschirmen lässt», erklärt er. Er hofft daher, dass er und sein Team mit dem Experiment dazu beitragen können, das Rätsel der Gravitation zu knacken. Die Wissenschaft hat diese Naturkraft oder die Experimente, die sich darauf beziehen, noch immer nicht vollständig verstanden.
Ein besseres Verständnis der Gravitation würde es beispielsweise erlauben, die Signale von Gravitationswellen besser zu interpretieren. Solche Wellen konnten im Jahr 2015 in den LIGO-Observatorien in den USA erstmals nachgewiesen werden. Sie waren das Resultat von zwei sich umkreisenden Schwarzen Löchern, die in rund 1,3 Milliarden Lichtjahren Entfernung zur Erde verschmolzen waren. Seither konnten Wissenschaftler*innen dutzende solche Ereignisse dokumentieren. Könnte man solche Ereignisse detailliert nachzeichnen, ließen sich neue Einblicke in das Universum und dessen Geschichte gewinnen.
Krönender Karriereabschluss
Jürg Dual beschäftigt sich seit 1991 mit Methoden zur Messung der Gravitationskonstante, stellte die Arbeit daran zwischenzeitlich aber wieder ein. Die Beobachtung von Gravitationswellen am LIGO verlieh seiner Forschung neuen Schub, und 2018 nahm er die Gravitationsforschung wieder auf. 2019 richtete die Gruppe das Labor in der Festung Furggels ein und setzte neue Experimente auf. Am Projekt beteiligt waren nebst den Wissenschaftlern aus Duals Gruppe auch Infrastrukturpersonal wie Reinraumspezialisten, ein Elektroingenieur und ein Mechaniker sowie eine Statistikerin. «Dieses Experiment ist nur dank eines jahrelangen Team-Efforts zustande gekommen.»
Publikation
Brack T, Zybach B, Balabdaoui F, et al. Dynamic measurement of gravitational coupling between resonating beams in the hertz regime. Nature Physics, 11. Juli 2022. Doi: 10.1038/s41567-022-01642-8
https://www.nature.com/articles/s41567-022-01642-8
Diskutieren Sie mit im Raumcon-Forum: