Teilchenphysik

Die Konturen in Farbe zeigen die Intensitäten der donutförmigen Strahlungsgürtel. Die grauen Linien symbolisieren die Flugbahnen der relativistischen Elektronen in den Strahlungsgürteln. Konzentrische Kreislinien im Vordergrund zeigen die Flugbahn von wissenschaftlichen Satelliten, die diese gefährliche Region im Weltraum durchqueren. (Bild: Ingo Michaelis und Yuri Shprits, GFZ)

Erdnahe Elektronen fast auf Lichtgeschwindigkeit

Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit? Neue Studie zeigt: In der Magnetosphäre müssen dafür sehr spezielle Bedingungen herrschen, nämlich eine extrem geringe Plasmadichte. Eine Pressemitteilung des Helmholtz-Zentrum Potsdam – Deutsches GeoForschungsZentrum GFZ. Quelle: GFZ. Neuere Messungen von Raumsonden der NASA haben gezeigt: Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und […]

Erdnahe Elektronen fast auf Lichtgeschwindigkeit Weiterlesen »

Prof. Dr. Matthias Neubert (Bild: Werner Feldmann / JGU)

Durch die fünfte Dimension zur Dunklen Materie

Eine Entdeckung in der theoretischen Physik könnte helfen, das Rätsel der Dunklen Materie zu lösen. Eine Pressemitteilung der Johannes Gutenberg-Universität Mainz. Quelle: Johannes Gutenberg-Universität Mainz. Theoretische Physiker des Exzellenzclusters PRISMA+ der Johannes Gutenberg-Universität Mainz (JGU) arbeiten an einer Theorie, die über das Standardmodell der Teilchenphysik hinausgeht und Fragen beantworten kann, bei denen das Standardmodell passen

Durch die fünfte Dimension zur Dunklen Materie Weiterlesen »

Atomstruktur und Elektronenverteilung in warmer dichter Materie. (Bild: Attila Cangi)

Mit KI warme dichte Materie verstehen

Mit Künstlicher Intelligenz warme dichte Materie verstehen – CASUS-Forscher*innen entwickeln effektives Werkzeug zur Beschreibung des exotischen Materiezustands. Eine Pressemitteilung des HZDR – Helmholtz-Zentrum Dresden-Rossendorf. Quelle: HZDR – Helmholtz-Zentrum Dresden-Rossendorf. Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen. Dieser Materiezustand, der Eigenschaften sowohl von Festkörpern als auch von

Mit KI warme dichte Materie verstehen Weiterlesen »

Der Rückstoßseparator TASCA bei GSI: Der Calcium-Strahl des UNILAC-Beschleunigers gelangte durch das links im Bild sichtbare Strahlrohr zum Targetbereich (Bildmitte), in dem die Kernverschmelzung zur Flerovium-Produktion erfolgte. (Bild: Gabi Otto/GSI)

Kursänderung auf der Reise zur Insel der Stabilität

Zentrum der Insel der Stabilität liegt nicht bei Element 114 – Schwerere Elemente werden verstärkt ins Rampenlicht rücken. Gemeinsame Pressemitteilung des GSI Helmholtzzentrums für Schwerionenforschung, des Helmholtz-Instituts Mainz (HIM) und der Johannes Gutenberg-Universität Mainz (JGU), in Zusammenarbeit mit der Universität Lund. Quelle: Johannes Gutenberg-Universität Mainz. Einem internationalen Forschungsteam gelang es, an den Beschleunigeranlagen des GSI

Kursänderung auf der Reise zur Insel der Stabilität Weiterlesen »

Blick von oben auf das BASE-Experiment. (Bild: BASE-Kollaboration/CERN)

BASE: Hilfe bei der Suche nach kalter dunkler Materie

Das Baryon-Antibaryon-Symmetrie-Experiment (BASE) eröffnet neue Möglichkeiten für die Suche nach kalter dunkler Materie. Eine Pressemitteilung des Max-Planck-Instituts für Kernphysik Heidelberg. Quelle: Max-Planck-Institut für Kernphysik Heidelberg. Das Baryon-Antibaryon-Symmetrie-Experiment (BASE) am Antiprotonen-Entschleuniger des CERN hat neue Grenzen für die Masse von Axion-ähnlichen Teilchen – hypothetischen Teilchen, die Kandidaten für dunkle Materie sind – festgelegt und eingeschränkt, wie

BASE: Hilfe bei der Suche nach kalter dunkler Materie Weiterlesen »

The Science of Citizen Science (Bild: Grafik: SPOTTERON Citizen Science | www.spotteron.net)

Über die Wissenschaft von „Citizen Science“

Neue Publikation über die Wissenschaft von „Citizen Science“ veröffentlicht. Eine Pressemitteilung des Naturhistorischen Museums Wien. Quelle: Naturhistorisches Museum Wien. Am 12.01.2021 wurde das Buch „The Science of Citizen Science“ open access bei Springer veröffentlicht, zu dem über 100 Autorinnen und Autoren aus 22 Ländern beigetragen haben, darunter auch über zehn aus Österreich. Erste Herausgeberin ist

Über die Wissenschaft von „Citizen Science“ Weiterlesen »

Jugendliche ab 16 Jahren und Studierende der ersten Semester können in einem Online-Workshop den Teilchendetektor ALICE mit Lego nachzubauen. (Bild: Fotograf: Julien Ordan/CERN. Montage: WWU)

CERN-Detektor als Legomodell nachbauen

CERN-Detektor als Legomodell nachbauen – Einladung an Schüler:innen und Studierende. Eine Pressemitteilung der Goethe-Universität Frankfurt am Main. Quelle: Goethe-Universität Frankfurt am Main. Das deutsche Netzwerk der ALICE-Kollaboration am CERN lädt Jugendliche ab 16 Jahren und Studierende der ersten Semester ein, den Teilchendetektor ALICE mit Lego nachzubauen. Physiker*innen der Goethe-Universität Frankfurt und der Westfälischen Wilhelms-Universität Münster

CERN-Detektor als Legomodell nachbauen Weiterlesen »

Prof. Reinhard Dörner (links) und Dr. Maksim Kunitzki vor dem COLTRIMS-Reaktionsmikroskop an der Goethe-Universität Frankfurt, mit dessen Hilfe die „Quantenwelle“ beobachtet werden konnte. (Bild: Goethe-Universität Frankfurt)

Erstmals Quantenwelle im Heliumdimer gefilmt

Ein internationales Wissenschaftsteam der Goethe-Universität Frankfurt und der University of Oklahoma hat erstmals Effekte der Quantenphysik an einem auseinanderbrechenden Heliumdimer gefilmt. Der Film zeigt die Überlagerung von Wellen zweier Ereignisse, die mit unterschiedlicher Wahrscheinlichkeit gleichzeitig auftreten: Der Fortbestand und das Auseinanderbrechen des Heliumdimers. Die Methode könnte künftig erlauben, das Entstehen und den Zerfall quantenphysikalischer Efimov-Systeme

Erstmals Quantenwelle im Heliumdimer gefilmt Weiterlesen »

Valenzstrichformel des Wasserstoffmoleküls (Bild: Lukáš Mižoch - gemeinfrei)

Hohe Drücke lassen Wasserstoff-Varianten kollabieren

Bayreuther Forschungsteam: Hohe Drücke lassen Wasserstoff-Varianten kollabieren. Wasserstoff existiert als gasförmige Verbindung zweier Wasserstoff-Atome (H2). Unter normalen Laborbedingungen kommt H2 in den Varianten „Orthowasserstoff“ und „Parawasserstoff“ vor. Bisher war es eine offene Frage, wie sich diese Varianten unter sehr hohen Drücken verhalten. Eine Pressemitteilung der Universität Bayreuth. Quelle: Universität Bayreuth. Forscher*innen der Universität Bayreuth haben

Hohe Drücke lassen Wasserstoff-Varianten kollabieren Weiterlesen »

Künstlerische Darstellung zweier sich umkreisender Neutronensterne kurz vor der Kollision. (Bild: Niclas Moldenhauer)

UP: Eigenschaften von Materie und Raumzeit offenbart

Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums. Dazu kombinierten sie Beobachtungsdaten von Neutronenstern-Kollisionen mit kernphysikalischen Berechnungen. Ihre wegweisenden Ergebnisse wurden jetzt im hochrangigen Wissenschaftsmagazin „Science“ veröffentlicht. Eine Medieninformation der Universität Potsdam (UP). Quelle: Universität

UP: Eigenschaften von Materie und Raumzeit offenbart Weiterlesen »

Ionenquelle des LUNA-Beschleunigers während einer Wartungsphase. Die Leuchterscheinung ist das Wasserstoffplasma, aus dem Wasserstoffkerne für die Fusionsreaktion gewonnen werden. (Bild: LUNA Collaboration/LNGS-INFN)

HZDR: Zeitreise zum Urknall

Messung einer nuklearen Schlüsselreaktion liefert unabhängige Bestätigung für wichtigen Parameter der Kosmologie. Eine Pressemitteilung des HZDR – Helmholtz-Zentrum Dresden-Rossendorf. Quelle: HZDR – Helmholtz-Zentrum Dresden-Rossendorf. Die Wissenschaftler*innen im Bereich der nuklearen Astrophysik wollen die Entstehung der Elemente im Universum seit Anbeginn der Zeit erklären. Die dabei erdachten Modelle fußen auf Kenngrößen, die sie aus Messdaten gewinnen,

HZDR: Zeitreise zum Urknall Weiterlesen »

Eingehende zirkulare links- und rechts-polarisierte Röntgenpulse streuen unterschiedlich an chiralen magnetischen Domänenwänden, was zu einer im Differenzsignal beobachteten Asymmetrie führt. (Bild: Frank Freimuth)

Ultraschnelle Dynamik von chiralen Spinstrukturen

Ultraschnelle Dynamik von chiralen Spinstrukturen nach optischer Anregung beobachtet. Untersuchung von zeitaufgelösten Femtosekunden-Röntgenstreusignalen enthüllt schnellere Dynamik von chiraler im Vergleich zu kollinearer magnetischer Ordnung. Eine Pressemitteilung der Johannes Gutenberg-Universität Mainz. Quelle: Johannes Gutenberg-Universität Mainz. Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU), der Universität Siegen, des Forschungszentrums Jülich und des Elettra-Synchrotrons in Triest hat einen

Ultraschnelle Dynamik von chiralen Spinstrukturen Weiterlesen »

Veranschaulichung des Verhaltens von ULDM in Galaxien: Es wird erwartet, dass sich in den inneren Teilen der Galaxie ein Kondensatkern bildet, da dort die Wellenlänge der ULDM kleiner ist als die mittlere Distanz der Teilchen, während sich die Dunkle Materie in den Außenbezirken oder außerhalb von Galaxien „normaler“ und als einzelne Teilchen verhält. (Bild: MPA)

Dunkle Materie, leicht unscharf: Fuzzy Dark Matter

Einer der vielen Kandidaten für Dunkle Materie ist vor Kurzem wieder stärker in den Fokus der Wissenschaft gelangt, die so genannte ultra-leichte Dunkle Materie. Wissenschaftler am MPA haben nun in einem Überblick den aktuellen Status dieser Modelle und die Suche nach beobachtbaren Merkmalen vorgestellt, sowie eine neue Einteilung von ultra-leichter Dunkler Materie in drei verschiedene

Dunkle Materie, leicht unscharf: Fuzzy Dark Matter Weiterlesen »

Die beiden Mars-Monde Phobos und Deimos. (Bild: NASA/JPL-Caltech/University of Arizona)

Was lässt Oberfläche von Phobos verwittern?

Laborexperimente könnten Rätsel um Mars-Mond Phobos lösen. Ergebnisse der TU Wien liefern wichtige Erkenntnisse, bald soll eine Weltraummission Gesteinsproben nehmen. Eine Presseaussendung der TU Wien. Quelle: TU Wien. Wetter in unserem Sinn gibt es im Weltraum natürlich keines – trotzdem kann Gestein auch im Vakuum des Alls „verwittern“, wenn es andauernd von energiereichen Teilchen bombardiert

Was lässt Oberfläche von Phobos verwittern? Weiterlesen »

In diesem Bild ist zusätzlich der zentrale Nylonballon zu sehen, der 280 Tonnen einer speziellen Szintillatorflüssigkeit enthält. (Bild: Borexino Collaboration)

JGU: Erstmals solare CNO-Neutrinos beobachtet

Geisterteilchen sind ein Beweis für den sekundären Fusionsprozess, der unsere Sonne antreibt. Eine Pressemitteilung der Johannes Gutenberg-Universität Mainz. Quelle: Johannes Gutenberg-Universität Mainz. Wissenschaftlerinnen und Wissenschaftler der Borexino-Kollaboration haben den ersten experimentellen Beweis für das Auftreten des sogenannten CNO-Zyklus in der Sonne erbracht: Sie konnten charakteristische Neutrinos, die bei diesem Fusionsprozess entstehen, direkt beobachten. Dies ist

JGU: Erstmals solare CNO-Neutrinos beobachtet Weiterlesen »

Nach oben scrollen