Teilchenphysik

Event Display eines W-Bosonen-Kandidaten, der im ATLAS-Experiment in ein Myon und ein Myon-Neutrino zerfällt. Die blaue Linie zeigt die rekonstruierte Spur des Myons, und der rote Pfeil kennzeichnet die Energie des unentdeckten Myon-Neutrinos. (Bild: CERN)

Verbessertes ATLAS-Ergebnis gibt Aufschluss über das W-Boson

Eine verbesserte Analyse von ATLAS-Daten zur Masse des W-Bosons steht im Einklang mit dem Standardmodell der Teilchenphysik. Eine Pressemitteilung der Johannes Gutenberg-Universität (JGU) Mainz. Quelle: JGU 23. März 2023. 23. März 2023 – Das W-Boson ist ein Elementarteilchen, das 1983 am CERN entdeckt wurde und das für die Vermittlung der sogenannten schwachen Wechselwirkung verantwortlich ist. […]

Verbessertes ATLAS-Ergebnis gibt Aufschluss über das W-Boson Weiterlesen »

Nachgewiesener Neutrinokandidat im FASER-Detektor. Zu sehen ist ein Myon (rote Linie), erzeugt durch ein Neutrino im Wolfram/Emulsionsdetektor (gelb). Dabei werden auch Sekundärteilchen erzeugt, die im Interfacetracker nachgewiesen werden (gelbe Linien). (Bild: FASER-Kollaboration)

Erstmals Neutrinos aus einem Teilchenbeschleuniger beobachtet

Neutrinos gehören zu den am häufigsten vorkommenden Teilchen im Kosmos, geben Forschenden jedoch nach wie vor viele Rätsel auf. Ein internationales Team unter Beteiligung der Universität Bonn hat jetzt zum ersten Mal Neutrinos direkt beobachtet, die in einem Teilchenbeschleuniger erzeugt wurden. Eine Pressemitteilung der Rheinischen Friedrich-Wilhelms-Universität Bonn. Quelle: Rheinische Friedrich-Wilhelms-Universität Bonn 20. März 2023. 20.

Erstmals Neutrinos aus einem Teilchenbeschleuniger beobachtet Weiterlesen »

Ein Blick in den offenen Belle II-Detektor in Japan. (Foto: Yannik Buch)

Entdeckungsreise in die Teilchenphysik

Universität Göttingen lädt am 14. März 2023 zu International Masterclasses ein. Eine Presseinformation der Universität Göttingen. Quelle: Universität Göttingen 7. März 2023. 7. März 2023 – Wie entstand das Universum? Woraus bestehen wir? Was untersuchen Teilchenbeschleuniger? Solchen Fragen können Schülerinnen und Schüler ab der 10. Klasse bei den International Masterclasses an der Universität Göttingen nachgehen.

Entdeckungsreise in die Teilchenphysik Weiterlesen »

Ein Blick in das Innere des 10.000 Tonnen schweren ALICE-Detektors. Teilchenphysiker der WWU Münster sind an diesem Experiment am CERN beteiligt. (Bild: CERN - A. Saba)

WWU: Physik-Schülerworkshops geben Einblicke in Großexperiment

Vom Beginn des Universums: „International Masterclass“ am 17. Februar 2023 an der Universität Münster. Eine Information der Westfälischen Wilhelms-Universität (WWU). Quelle: WWU 10. Februar 2023. 10. Februar 2023 – Wie das Universum entstand, versuchen Wissenschaftlerinnen und Wissenschaftler aus aller Welt am Kernforschungszentrum CERN bei Genf herauszufinden. An der Forschung beteiligen sich auch Physikerinnen und Physiker

WWU: Physik-Schülerworkshops geben Einblicke in Großexperiment Weiterlesen »

Designkonzept des RUBIK-Teilchendetektors. In weiß hervorgehoben sind die regelmäßig angeordneten Plastikszintillatoren, die von Lichtleitfasern (grün) durchdrungen sind. (Grafik: II. Physikalisches Institut der JLU)

RUBIK-Experiment der JLU soll ins All starten

Teilchendetektor der Gießener Physik wird 2025 Teil der Kleinsatellitenmission ROMEO. Eine Pressemitteilung der Justus-Liebig-Universität (JLU) Gießen. Quelle: JLU 31. Januar 2023. 31. Januar 2023 – Ein an der Justus-Liebig-Universität Gießen (JLU) entwickelter Teilchendetektor soll an Bord eines Satelliten ins All starten, um die erdnahe kosmische Strahlung zu untersuchen. Der Detektor RUBIK ist am II. Physikalischen

RUBIK-Experiment der JLU soll ins All starten Weiterlesen »

Der ALICE-Detektor wird für das Upgrade geöffnet. (Bild: Sebastian Scheid Goethe-Universität Frankfurt)

ALICE-Experiment am CERN startet Testbetrieb mit Blei-Ionen

Goethe-Uni koordinierte Detektor-Umbau. Eine Pressemitteilung der Goethe-Universität Frankfurt. Quelle: Goethe-Universität Frankfurt am Main 6. Dezember 2022. 6. Dezember 2022 – Den Materiezustand kurz nach dem Urknall, das sogenannte Quark-Gluon-Plasma, erforscht das ALICE-Experiment am Teilchenbeschleunigerzentrum CERN in Genf, wo Blei-Ionen miteinander kollidieren und für winzige Sekundenbruchteile ein solches Quark-Gluon-Plasma entstehen lassen. Jetzt wurden am CERN für

ALICE-Experiment am CERN startet Testbetrieb mit Blei-Ionen Weiterlesen »

Photonischer Schaltkreis in einem Glas-Chip. (Bild: Julia Tetzke Universität Rostock)

Universität Rostock: Quantenoptik im Glas

Rostocker Forschende kommen den Geheimnissen von roten, grünen und blauen Quarks-Teilchen auf die Schliche. Eine Pressemitteilung der Universität Rostock. Quelle: Universität Rostock 1. Dezember 2022. 1. Dezember 2022 – Forschenden der Universität Rostock ist es gelungen, in einem unscheinbaren Stück Glas einen Schaltkreis für Licht entstehen zu lassen. Damit konnten sie grundlegende Eigenschaften aus der

Universität Rostock: Quantenoptik im Glas Weiterlesen »

Die länglichen Atomorbitale in einem einzelnen gefangenen Ytterbium-Ion sind in Bezug auf ein statisches Magnetfeld im Labor ausgerichtet (rosa Pfeil). Um die Raum-Zeit-Symmetrie zu untersuchen, wurde die Energiedifferenz zwischen zwei orthogonalen Orbitalen gemessen, während sich die Erde dreht und sich ihre Ausrichtungen im Universum ändern. (Bild: PTB)

Test der Raum-Zeit-Symmetrie in Atomen mit Weltrekord-Genauigkeit

Forschende des QUEST-Instituts an der PTB finden auch bei verdoppelter Genauigkeit keinen Hinweis auf Symmetriebrüche – aktuell in Nature Communications. Eine Presseinformation der Physikalisch-Technischen Bundesanstalt (PTB). Quelle: Physikalisch-Technische Bundesanstalt 30. November 2022. 30. November 2022 – Die theoretische Beschreibung physikalischer Phänomene beruht auf einer grundlegenden Annahme: dass nämlich das Ergebnis eines Experiments nicht von seiner

Test der Raum-Zeit-Symmetrie in Atomen mit Weltrekord-Genauigkeit Weiterlesen »

Schwerionensynchrotron SIS18 – Außenansicht. (Foto: J. Hosan/GSI Helmholtzzentrum für Schwerionenforschung GmbH)

Sicherheit im Weltraum: Künstlicher Winterschlaf könnte Schutz vor kosmischer Strahlung bieten

Noch ist es ein Blick in die Zukunft: Raumfahrer könnten in einen künstlichen Winterschlaf versetzt werden und in diesem Zustand besser vor kosmischer Strahlung geschützt sein. Aktuell gibt es bereits vielversprechende Ansätze, um solche Überlegungen weiterzuverfolgen. Entscheidende Anhaltspunkte für den möglichen Nutzen eines künstlichen Winterschlafs für die Strahlenresistenz hat jetzt ein internationales Forschungsteam unter Federführung

Sicherheit im Weltraum: Künstlicher Winterschlaf könnte Schutz vor kosmischer Strahlung bieten Weiterlesen »

Einblick in das Vakuumrohr des Beam EDM Experiments mit drei Elektroden zwischen denen sich die Neutronenstrahlen bewegen. (Bild: zvg)

Mit Neutronen-Spin-Uhren auf der Spur von Dunkler Materie

Mit Hilfe eines an der Universität Bern entwickelten Präzisionsexperiments konnte ein internationales Forschungsteam den Spielraum für die Existenz von dunkler Materie deutlich einschränken. Das Experiment wurde an der Europäischen Forschungsneutronenquelle des Instituts Laue-Langevin in Frankreich durchgeführt und liefert einen wichtigen Beitrag bei der Suche nach diesen noch unbekannten Materieteilchen. Eine Medienmitteilung der Universität Bern. Quelle:

Mit Neutronen-Spin-Uhren auf der Spur von Dunkler Materie Weiterlesen »

Prof. Elisa Resconi beschäftigt sich in ihrer Forschung schwerpunktmäßig mit Neutrinos. Als astrophysikalische Boten eröffnen kosmische Neutrinos einen neuen Blick ins Universum. (Bild: A. Heddergott / TUM)

Erstes Neutrino-Bild einer aktiven Galaxie

Seit mehr als zehn Jahren detektiert das IceCube Observatorium in der Antarktis Leuchtspuren extragalaktischer Neutrinos. Ein internationales Forschungsteam unter der Leitung der Technischen Universität München (TUM) hat bei der Auswertung der Daten in der aktiven Galaxie NGC 1068, auch bekannt als Messier 77, eine Quelle hochenergetischer Neutrino-Strahlung entdeckt. Eine Pressemitteilung der Technischen Universität München. Quelle:

Erstes Neutrino-Bild einer aktiven Galaxie Weiterlesen »

Illustration der neuen Methode, die fünfdimensionale schwarze Löcher (rechts) zur Berechnung des Phasendiagramms stark wechselwirkender Materie (Mitte) verwendet und damit Simulation für Neutronensterne und deren Gravitationswellen ermöglicht (links). (Grafik: Goethe-Universität Frankfurt)

Dichter geht’s nicht: Neues Modell für Materie in Neutronensternenkollisionen

Nach schwarzen Löchern sind Neutronensterne die dichtesten Objekte in unserem Universum. Wie ihr Name schon sagt, bestehen Neutronensterne zum größten Teil aus Neutronen. Über die Materie, die bei der Kollision zweier Neutronensterne entsteht, weiß man jedoch wenig. Wissenschaftler*innen an der Goethe-Universität Frankfurt und dem Asia Pacific Center für Theoretische Physik im südkoreanischen Pohang haben nun

Dichter geht’s nicht: Neues Modell für Materie in Neutronensternenkollisionen Weiterlesen »

Computersimulation eines 500 Mikrosekunden andauernden Type-I-ELMs. Die Abbildung zeigt einen Querschnitt durch das Donut-förmige Vakuumgefäß eines Tokamaks. Am Rand des Fusionsplasmas bilden sich in regelmäßigen Zeitabständen wiederkehrende Eruptionen. Diese ELMs treten auf, wenn das Plasma in der H-Mode betrieben wird. Die Abbildung beruht auf Rechnungen mit dem Code JOREK in der Veröffentlichung A. Cathey et al 2020 Nucl. Fusion 60 124007 (Bild: A. Cathey, M. Hoelzl/Max-Planck-Institut für Plasmaphysik)

Diese Entdeckung hat ITER erst möglich gemacht

Vor 40 Jahren fanden Physiker am Max-Planck-Institut für Plasmaphysik einen neuen Plasmazustand, der sich besonders gut für die Energiegewinnung eignen könnte: die H-Mode. Am 8. November 1982 erschien der zugehörige Fachartikel, der der Fusionsforschung weltweit Auftrieb gab. Bis heute gehört die Untersuchung der H-Mode zu ihren wichtigsten Arbeitsgebieten. Eine Pressemeldung des Max-Planck-Institut für Plasmaphysik (IPP).

Diese Entdeckung hat ITER erst möglich gemacht Weiterlesen »

(Bild: Universität Hamburg)

„Wie alles begann: Von Galaxien, Quarks und Kollisionen” – Eine Reise zum Ursprung des Universums

„Wo kommen wir her, wo gehen wir hin?” oder „Hat das Universum einen Anfang und ein Ende?” – die multimediale Sonderausstellung „Wie alles begann” im Museum der Arbeit führt die Besucherinnen und Besucher vom 26. Oktober 2022 bis 10. April 2023 zum Urknall und in die Unendlichkeit des Weltalls. Eine Pressemitteilung der Universität Hamburg. Quelle:

„Wie alles begann: Von Galaxien, Quarks und Kollisionen” – Eine Reise zum Ursprung des Universums Weiterlesen »

Künstlerische Illustration, die den neu entdeckten optischen Effekt veranschaulicht. Ohne Doppelbrechung (oben) strömt das Licht von einer isotropen Lichtquelle radial aus. Mit Doppelbrechung (unten) wird das Licht langsam in Richtung der Eisflussachse abgelenkt. (Bild: Jack Pairin / IceCube Kollaboration)

Das Eis verstehen: Mainzer Wissenschaftlerteam gelingt der Durchblick im diffusen Eis der Antarktis

Neu entdeckter optischer Effekt ermöglicht IceCube-Experiment Rückschlüsse auf Eiskristalleigenschaften. Eine Pressemitteilung der IceCube Kollaboration. Quelle: Johannes Gutenberg-Universität (JGU) Mainz 22. Oktober 2022. 22. Oktober 2022 – Seit 2010 sucht das IceCube-Neutrino-Observatorium am Südpol nach hochenergetischen Neutrinos aus dem Weltall. Das Experiment besteht aus 5.160 optischen Sensoren, den sogenannten digitalen optischen Modulen (DOMs), die bis zu

Das Eis verstehen: Mainzer Wissenschaftlerteam gelingt der Durchblick im diffusen Eis der Antarktis Weiterlesen »

Nach oben scrollen