Kosmologie

Ein Bild des Hubble-Weltraumteleskops vom Kern des Quasars 3C 273. Ein Koronagraph auf Hubble blockiert die Blendung, die von dem supermassiven schwarzen Loch im Herzen des Quasars ausgeht. Dadurch können die Astronomen noch nie dagewesene Details in der Nähe des Schwarzen Lochs erkennen, wie z. B. seltsame Filamente, Lappen und eine mysteriöse L-förmige Struktur, die wahrscheinlich von kleinen Galaxien verursacht wird, die von dem Schwarzen Loch verschlungen werden. Der 2,5 Milliarden Lichtjahre entfernte 3C 273 ist der erste Quasar (quasi-stellares Objekt), der 1963 entdeckt wurde. (Bild: NASA, ESA, Bin Ren (Université Côte d'Azur/CNRS); Danksagung: John Bahcall (IAS); Bildverarbeitung: Joseph DePasquale (STScI))

Hubble wirft den genauesten Blick aller Zeiten auf einen Quasar

Astronomen haben die einzigartigen Möglichkeiten des Hubble-Weltraumteleskops der NASA genutzt, um näher als je zuvor in den Schlund eines energiereichen Monster-Schwarzen Lochs zu blicken, das einen Quasar antreibt. Ein Quasar ist ein galaktisches Zentrum, das hell leuchtet, wenn das Schwarze Loch Material in seiner unmittelbaren Umgebung verzehrt. Eine Pressemitteilung der NASA. Quelle: NASA, 5. Dezember […]

Hubble wirft den genauesten Blick aller Zeiten auf einen Quasar Weiterlesen »

Die Anisotropien des kosmischen Mikrowellenhintergrunds (CMB), wie von Planck beobachtet. Diese Regionen mit leicht unterschiedlichen Dichten sind hier in blau- und orange-Schattierungen dargestellt, in einem sehr körnig aussehenden dreifarbigem Bild mit weißem Hintergrund.Es zeigt winzige Temperaturschwankungen, die Regionen mit leicht unterschiedlicher Dichte entsprechen und den Keim für alle zukünftigen Strukturen darstellen: die heutigen Sterne und Galaxien.

AstroGeo Podcast: Das Ende des Anfangs – was vom Urknall übrigblieb

Es war einmal: der Urknall. In dieser Folge wird die Geschichte erzählt, wie Physiker die kosmische Mikrowellenhintergrundstrahlung entdeckten – und was diese Strahlung mit Babyfotos, Taubendreck und einem sehr langweiligen Universum zu tun hat.

AstroGeo Podcast: Das Ende des Anfangs – was vom Urknall übrigblieb Weiterlesen »

Das SPHEREx-Observatorium der NASA wird im April 2024 bei BAE Systems in Boulder, Colorado, integriert und getestet. Das Weltraumteleskop wird eine Technik namens Spektroskopie über den gesamten Himmel anwenden und das Universum in mehr als 100 Spektralfarben abbilden. (Bild: BAE Systems)

Warum die SPHEREx-Mission der NASA die „bunteste“ kosmische Karte aller Zeiten erstellen wird

Das Weltraumteleskop wird über 100 Spektralfarben von Hunderten von Millionen von Sternen und Galaxien erfassen. Hier wird erklärt, was die Astronomen mit all diesen Farben machen werden. Eine Pressemitteilung der NASA. Quelle: NASA, JPL, 31. Oktober 2024. Pasadena, 31. Oktober 2024 – Die SPHEREx-Mission der NASA wird nicht das erste Weltraumteleskop sein, das Hunderte von

Warum die SPHEREx-Mission der NASA die „bunteste“ kosmische Karte aller Zeiten erstellen wird Weiterlesen »

Diese Veröffentlichung zeigt eine künstlerische Darstellung, die die zerstörerische Kraft eines supermassiven Schwarzen Lochs veranschaulicht. Das digitale Bild zeigt eine Scheibe aus stellarem Material, die ein solches Schwarzes Loch umgibt. An seinem äußeren Rand kollidiert ein benachbarter Stern mit der Scheibe und fliegt durch sie hindurch. Das Schwarze Loch befindet sich auf halber Höhe am rechten Rand des vertikalen Bildes. Es ähnelt einem tiefschwarzen Halbkreis mit einer gewölbten Kappe aus blassblauem Licht. Die untere Hälfte des kreisförmigen schwarzen Lochs ist hinter der Scheibe aus stellarem Material verborgen. In dieser Abbildung ist die Scheibe von der Kante aus gesehen. Sie ähnelt einem Band aus wirbelndem gelbem, orangefarbenem und rotem Gas, das sich diagonal von unserer rechten Mitte nach links unten erstreckt. In der Nähe unserer unteren linken Seite überschneidet sich der äußere Rand der Sterntrümmerscheibe mit einer hellen blauen Kugel, die von leuchtenden weißen Strudeln umgeben ist. Diese Kugel stellt einen benachbarten Stern dar, der durch die Scheibe kracht. Die stellare Scheibe ist das Wrack eines zerstörten Sterns. Eine elektrisch blau-weiße Welle zeigt das heißeste Gas in der Scheibe. Wenn der Nachbarstern durch die Scheibe stürzt, hinterlässt er eine Gasspur, die als Streifen aus feinem Nebel dargestellt ist. Dabei werden Ausbrüche von Röntgenstrahlung freigesetzt, die von Chandra nachgewiesen werden. In der oberen linken Ecke der Abbildung ist ein Kasten eingefügt, der eine Nahaufnahme der Quelle im Röntgenlicht und im optischen Licht zeigt. Das Röntgenlicht ist violett dargestellt, das optische Licht weiß und beige. Röntgenstrahlen: NASA/CXC/Queen's Univ. Belfast/M. Nicholl et al.; Optisch/IR: PanSTARRS, NSF/Legacy Survey/SDSS; Illustration: Soheb Mandhai / The Astro Phoenix; Bildverarbeitung: NASA/CXC/SAO/N. Wolk

NASA: Schwarzes Loch zerstört Stern und jagt einen weiteren

Das Chandra-Röntgenobservatorium der NASA und andere Teleskope haben ein supermassereiches Schwarzes Loch identifiziert, das einen Stern zerrissen hat und nun die Trümmer des Sterns nutzt, um einen anderen Stern oder ein kleineres Schwarzes Loch zu vernichten, wie in unserer jüngsten Pressemitteilung beschrieben. Diese Forschung trägt dazu bei, zwei kosmische Rätsel miteinander zu verbinden, und liefert

NASA: Schwarzes Loch zerstört Stern und jagt einen weiteren Weiterlesen »

Ein bunter Nebel im Weltall, mit Sternen im Hintergrund. Die Strukturen im Nebel erinnern an kantige Bergumrisse.

AstroGeo Podcast: Erbe des Urknalls – wie die Materie entstand

Der Anfang unseres Universums war der Urknall, aber was ist dann passiert? Franzi erzählt euch, wie die Materie entstanden ist, allen voran die beiden häufigsten chemischen Elemente Wasserstoff und Helium.

AstroGeo Podcast: Erbe des Urknalls – wie die Materie entstand Weiterlesen »

Logo 70 Jahre CERN. (Quelle: home.cern)

70 Jahre Forschungszentrum CERN

Deutschland feiert mit Veranstaltungen in Berlin und an Teilchenphysikstandorten in ganz Deutschland. Ausstellung, Experimente, Talkabend und sogar eine Oper über den Anfang des Universums bringen Besucherinnen und Besuchern die Forschung näher. Eine Presseinformation des Deutschen Elektronen-Synchrotrons DESY – ein Forschungszentrum der Helmholtz-Gemeinschaft. Quelle: DESY 21. August 2024. 21. August 2024 – Im Jahr 2024 feiert

70 Jahre Forschungszentrum CERN Weiterlesen »

Mit dem Einbau der ersten supraleitenden Hightech-Magnete hat die Installation der FAIR-Beschleunigermaschine begonnen. (Foto: Lars Möller, GSI/FAIR)

GSI: Installationsstart der FAIR-Beschleunigermaschine

Erste Magnete erfolgreich im Tunnel, 17 Meter unter der Erde, eingebaut. Eine Pressemitteilung des GSI Helmholtzzentrums für Schwerionenforschung Darmstadt. Quelle: GSI Helmholtzzentrum für Schwerionenforschung 2. August 2024. 2. August 2024 – Der Startschuss für die Installation der FAIR-Beschleunigermaschine ist gefallen. Die hoch präzisen Montagearbeiten in den Gebäuden der internationalen Beschleunigeranlage FAIR in Darmstadt haben begonnen:

GSI: Installationsstart der FAIR-Beschleunigermaschine Weiterlesen »

Die „Maxwell-Daemon-Kühldoppelfalle“, die im Rahmen der BASE-Kollaboration entwickelt wurde. Mit ihr können Antiprotonen sehr schnell auf Temperaturen abgekühlt werden, die für Hochpräzisionsmessungen notwendig sind. (Bild: BASE-Kollaboration / Stefan Ulmer)

HHU: Kalte Antimaterie für quanten-aufgelöste Präzisionsmessungen

Warum gibt es Materie im Universum und (fast) keine Antimaterie? Der internationalen Forschungskollaboration BASE am CERN in Genf unter Leitung von Prof. Dr. Stefan Ulmer von der Heinrich-Heine-Universität Düsseldorf (HHU) ist in diesem Zusammenhang ein experimenteller Durchbruch gelungen. Er kann dazu beitragen, die Masse und das magnetische Moment von Antiprotonen so präzise wie noch nie

HHU: Kalte Antimaterie für quanten-aufgelöste Präzisionsmessungen Weiterlesen »

Illustration der von DESI bestimmten dreidimensionalen Positionen von Galaxien, also auch der Abstände, mithilfe der spektroskopischen Messung der Rotverschiebung. (Grafik: DESI)

Kosmologie: Ringkampf am Himmel

Ein LMU-Team liefert ein Modell dafür, was die Farbe einer Galaxie über ihren Abstand verrät, um kosmische Strukturen zu vermessen. Eine Presseinformation der Ludwig-Maximilians-Universität München. Quelle: Ludwig-Maximilians-Universität München 15. Juli 2024. 15. Juli 2024 – Unser Universum ist etwa 13,8 Milliarden Jahre alt, und mit der Zeit sind aus kleinsten Ungleichheiten am Anfang die großen

Kosmologie: Ringkampf am Himmel Weiterlesen »

Vor einem Hintergrund voller hell leuchtender Sterne ist in der Mitte eine Spiralgalaxie mit einem dichteren, gelblich leuchtenden Zentrum und bläulichen Spiralarmen.

AstroGeo Podcast: Das Universum und sein Urknall – der Anfang des Anfangs

Das Universum wird weder größer noch kleiner, es hat es schon immer gegeben und es wird es immer geben – richtig? Nein! AstroGeo nimmt euch mit zurück zum Beginn des Urknalls: Wie wir herausgefunden haben, dass unser Universum entstanden ist.

AstroGeo Podcast: Das Universum und sein Urknall – der Anfang des Anfangs Weiterlesen »

AstroGeo Geplänkel

AstroGeoplänkel: Zwischen Multiversum und Meteoriten

Im AstroGeoPlänkel sprechen wir über eure Fragen, Kommentare, Anmerkungen und Wünsche zu den Geschichten aus dem AstroGeo Podcast. Dieses Mal mit unendlich vielen Affen, seriöser Physik und einem unseriösen Geologen.

AstroGeoplänkel: Zwischen Multiversum und Meteoriten Weiterlesen »

Physiker der Technischen Universität Darmstadt haben nun maßgebliche Beiträge zum Design von neuen Quantensensoren geleistet, die Dunkle Materie mit Hilfe hochpräziser Messungen detektieren sollen. (Bild: CC BY 4.0 DEED / Bearbeitung TU Darmstadt)

TU Darmstadt: Mit Atomwolken Dunkle Materie detektieren

Die Natur eines Großteils der Materie im Universum ist Physikern weiterhin ein Rätsel. Bisherige Versuche, sie zu detektieren, scheiterten. Nun zeigen Darmstädter Physiker, wie es mit so genannten Quantensensoren doch gelingen könnte. Eine Pressemitteilung der Technischen Universität Darmstadt. Quelle: Technische Universität Darmstadt 7. März 2024. 7. März 2024 – Mit Sensoren, die dank der Regeln

TU Darmstadt: Mit Atomwolken Dunkle Materie detektieren Weiterlesen »

Riesiger Quasar und kleine rote Punkte. Ein EIGER (JWST)-Bild des Quasars J1148+5251 mit 10 Milliarden Sonnenmassen (blaues Kästchen). Zwei “Baby-Quasare” (roten Kästchen) sind im selben Datensatz zu sehen. (Bild: NASA, ESA, CSA, J. Matthee (ISTA), R. Mackenzie (ETH Zürich), D. Kashino (National Observatory of Japan), S. Lilly (ETH Zürich))

JWST: Wachsende supermassereiche Schwarze Löcher entdeckt

Gleich im ersten Jahr seines Einsatzes machte das James-Webb-Weltraumteleskop eine unerwartete Entdeckung: Viele kleine lichtschwache rote Punkte im fernen Universum könnten die Art und Weise verändern, wie wir die Entstehung supermassereicher Schwarzer Löcher verstehen. Die Forschungsarbeit unter der Leitung von Jorryt Matthee, Assistenzprofessor für Astrophysik am Institute of Science and Technology Austria (ISTA), wurde nun

JWST: Wachsende supermassereiche Schwarze Löcher entdeckt Weiterlesen »

Ein Gravastern könnte wie eine Matrjoschka-Puppe aussehen. Dies fanden Physiker der Goethe-Universität Frankfurt heraus. (Bild: Daniel Jampolski und Luciano Rezzolla, Goethe-Universität)

Ein Stern wie eine Matrjoschka-Puppe: Neue Theorie für Gravasterne

Physiker der Goethe-Universität finden neue Lösung für Einsteins Allgemeine Relativitätstheorie. Eine Pressemitteilung der Goethe-Universität Frankfurt. Quelle: Goethe-Universität Frankfurt am Main 15. Februar 2024. 15. Februar 2024 – Würde es Gravasterne tatsächlich geben, sähen sie für einen weit entfernten Beobachter ähnlich aus wie Schwarze Löcher. Zwei theoretische Physiker der Goethe-Universität Frankfurt haben jetzt eine neue Lösung

Ein Stern wie eine Matrjoschka-Puppe: Neue Theorie für Gravasterne Weiterlesen »

Ein Bild voller kleiner Seifen- und Schaumblasen.

AstroGeo Podcast: Böse Doppelgänger – die Physik des Multiversums

Gibt es ein Paralleluniversum, in dem unsere bösen Doppelgänger leben? Sind wir Teil eines vor lauter Universen nur so blubbernden Multiversum? Und kann es überhaupt Leben im Paralleluniversum geben? Kurzum: Ist unser Universum einzigartig?

AstroGeo Podcast: Böse Doppelgänger – die Physik des Multiversums Weiterlesen »

Nach oben scrollen