ISS-Experimente wieder zurück auf der Erde
ISS-Experimente wieder zurück auf der Erde
Astronomie-Meldungen
Raumfahrt-Meldungen
Kurzmeldungen
News-Übersicht
News-Archiv
Alle Meldungen
RSS-Newsfeed
InSpace Magazin

Vierzehntäglich aktuelle Berichte und Meldungen via E-Mail

Autor: Raumfahrer.net Redaktion / 19. Juni 2019, 07:20 Uhr

eROSITA - die Jagd nach der Dunklen Energie beginnt

Am 21. Juni 2019 wird die Raumsonde Spektrum-Röntgen-Gamma (SRG) von der kasachischen Steppe aus zu einer spannenden Reise aufbrechen. Eine Proton-Rakete bringt die Raumsonde vom Kosmodrom Baikonur mit dem deutschen Röntgenteleskop eROSITA und seinem russischen Partnerinstrument ART-XC zu ihrem 1,5 Millionen Kilometer entfernten Ziel - dem Lagrange-Punkt 2. Eine Pressemitteilung des Deutschen Zentrums für Luft- und Raumfahrt (DLR).

Quelle: DLR
Druckansicht RSS Newsfeed
Roscosmos/DLR/SRG/Lavochkin

Bild vergrößernDas deutsche Röntgenteleskop eROSITA und sein russisches Partnerinstrument ART-XC sind auf der Navigator-Plattform installiert. Die Navigator-Plattform versorgt die Raumsonde Spektrum-Röntgen-Gamma mit Energie, schickt gewonnenen Daten zur Erde und treibt gleichzeitig die Raumsonde an.
(Bild: Roscosmos/DLR/SRG/Lavochkin)
Von dem auch kurz L2 genannten Ort des Kräftegleichgewichts aus wird eROSITA (extended Roentgen Survey with an Imaging Telescope Array) die gigantischste kosmische Inventur des heißen Universums beginnen. Das deutsche Weltraumteleskop wird dafür mit seinen sieben Röntgendetektoren den gesamten Himmel beobachten und nach heißen Quellen wie Galaxienhaufen, aktiven Schwarzen Löchern, Supernova-Überresten, Röntgendoppelsternen sowie Neutronensternen suchen und sie kartieren.

"eROSITA’s Röntgenaugen sind die besten, die jemals auf einem Weltraumteleskop gestartet sind. Ihre einmalige Kombination aus Lichtsammelfläche, Gesichtsfeld und Auflösung machen sie circa 20-mal so empfindlich wie das deutsche Teleskop ROSAT in den 1990-er Jahren - High-Tech made in Germany. So wird eROSITA uns dabei helfen, die Struktur des Kosmos und dessen Entwicklung besser zu verstehen. Insbesondere wird das deutsche Teleskop aber dazu beitragen, das Rätsel der Dunklen Energie zu lösen", betont Dr. Walther Pelzer, Vorstand im Deutschen Zentrum für Luft- und Raumfahrt (DLR) zuständig für das Raumfahrtmanagement, mit dessen Unterstützung eROSITA vom Max-Planck-Institut für Extraterrestrische Physik (MPE) gebaut wurde.

Dunkle Energie - ein ‚kosmischer Kraftstoff‘ beschleunigt die Ausdehnung des Universums
Unser Universum dehnt sich seit dem Urknall kontinuierlich aus. Noch bis in die 1990er-Jahre hatte man gedacht, dass diese kosmische Expansion langsamer wird und irgendwann zum Stillstand kommt. Doch dann kamen die Astrophysiker Saul Perlmutter, Adam Riess und Brian Schmidt. Sie beobachteten Sternenexplosionen, die weit sichtbar sind und immer gleich viel Licht abstrahlen. Sie vermaßen ihre Entfernungen und konnten es selbst kaum glauben. "Die beobachteten Supernovae Typ1a waren weniger hell, als man eigentlich erwartet hatte. Damit war klar: Das Universum wird bei seiner Ausdehnung nicht langsamer - ganz im Gegenteil. Es nimmt Fahrt auf und wird mit wachsender Geschwindigkeit immer weiter auseinandergetrieben", erklärt Dr. Thomas Mernik, eROSITA-Projektleiter beim DLR Raumfahrtmanagement.

P. Friedrich/MPE

Bild vergrößernDen ersten Kernbestandteil des Weltraumteleskops eROSITA bilden die sieben parallel ausgerichteten, identischen Spiegelmodule. Jedes hat einen Durchmesser von 36 Zentimetern und besteht aus 54 ineinander geschachtelten Spiegelschalen, deren Oberfläche aus einem Paraboloid und einem Hyperboloid (Wolter-I-Optik) zusammengesetzt ist. Sie sammeln hochenergetische Photonen und leiten diese an die Röntgenkameras weiter.
(Bild: P. Friedrich/MPE)
Mit dieser Erkenntnis haben die drei Forscher die Wissenschaft auf den Kopf gestellt und bekamen im Jahr 2011 den Nobelpreis für Physik verliehen. Doch Saul Perlmutter, Adam Riess und Brian Schmidt lassen uns mit einer entscheidenden Frage zurück: "Welcher ‚kosmische Kraftstoff‘ treibt das Universum an? Weil man diese Frage bis heute nicht beantworten kann und seine Zutaten nicht kennt, nannte man diesen Beschleuniger einfach Dunkle Energie. eROSITA wird nun versuchen, dem Grund dieser Beschleunigung auf die Spur zu kommen", erklärt Thomas Mernik.

Galaxienhaufen - ein Schlüssel zur Dunklen Energie
In Wirklichkeit wissen wir nicht viel über unser Universum. Wir kennen gerade einmal die Zutaten von vier Prozent seiner Energiedichte, denn so winzig ist der Anteil von "normaler" Materie wie Protonen und Neutronen an der "Rezeptur des Weltalls". Die anderen 96 Prozent sind ein Rätsel. Man vermutet heute, dass 26 Prozent die Dunkle Materie beisteuert.

Der größte Anteil mit geschätzten 70 Prozent macht allerdings die Dunkle Energie aus. Um ihr auf die Spur zu kommen, müssen Wissenschaftler etwas unvorstellbar Großes und extrem Heißes beobachten: "Galaxienhaufen setzen sich aus bis zu einigen tausend Galaxien zusammen, die sich mit unterschiedlichen Geschwindigkeiten im gemeinsamen Schwerefeld bewegen. In ihrem Inneren sind diese merkwürdigen Gebilde von einem dünnen, unvorstellbar heißen Gas durchdrungen, das sich durch seine Röntgenstrahlung beobachten lässt. Genau hier kommen die Röntgenaugen von eROSITA ins Spiel. Mit ihnen beobachten wir Galaxienhaufen und schauen, wie sie sich im Universum bewegen und vor allem, wie schnell sie das tun. Diese Bewegung wird uns dann hoffentlich mehr über die Dunkle Energie verraten", erklärt DLR-Projektleiter Thomas Mernik.

Karte des gesamten heißen Universums - gigantischste kosmische Inventur
Doch nicht nur die Bewegungsmuster der Galaxienhaufen interessieren die Wissenschaftler. Sie wollen diese Gebilde zählen und kartieren. Bis zu 100.000 solcher Haufen sollen die Röntgenaugen von eROSITA "einfangen" - mehr als jemals zuvor beobachtet wurden. Außerdem sollen weitere heiße Phänomene wie aktive Schwarze Löcher, Supernova-Überreste sowie Röntgendoppel- und Neutronensterne beobachtet und lokalisiert werden. Dafür durchmustert eROSITA alle sechs Monate den gesamten Himmel und erstellt in vier Jahren eine tiefe und detaillierte Karte des Universums im Röntgenbereich. Auf diese Weise wird eROSITA die gigantischste kosmische Inventur des heißen Universums durchführen und uns so dabei helfen, die Struktur des Kosmos und dessen Entwicklung besser zu verstehen.

P. Friedrich/MPE

Bild vergrößernDer zweite Kernbestandteil des Teleskops sind die Röntgenkameras. Im Brennpunkt jedes Spiegelsystems sitzt ein hochempfindlicher CCD-Detektor, der speziell für eROSITA im Halbleiterlabor der Max-Planck-Gesellschaft entwickelt wurde. Diese Detektoren sind eine Weiterentwicklung bereits existierender Röntgen-CCD-Kameras.
(Bild: P. Friedrich/MPE)
eROSITA - sieben Röntgenaugen blicken ins Universum
Das deutsche Teleskop setzt sich aus zwei Kernbestandteilen zusammen: seiner Optik und seinen Detektoren. Erstere besteht aus sieben parallel ausgerichteten Spiegelmodulen. Jedes Modul hat einen Durchmesser von 36 Zentimetern und besteht aus 54 ineinander geschachtelten Spiegelschalen, deren Oberfläche aus einem Paraboloid und einem Hyperboloid (Wolter-I-Optik) zusammengesetzt ist. "Die Spiegelmodule sammeln hochenergetische Photonen und leiten diese an die CCD-Röntgenkameras weiter, die speziell für eROSITA in unserem Halbleiterlabor in Garching entwickelt wurden. Sie bilden den zweiten Kernbestandteil von eROSITA und sitzen im Brennpunkt jedes Spiegelsystems. Diese hochempfindlichen Kameras sind die besten ihrer Art und bilden gemeinsam mit den Spiegelmodulen ein Röntgenteleskop, dessen Kombination aus Lichtsammelfläche und Gesichtsfeld unerreicht ist", erklärt Dr. Peter Predehl, eROSITA-Projektleiter beim Max-Planck-Institut für Extraterrestrische Physik.

Spektrum-Röntgen-Gamma - eine Raumfahrtmission mit vielen Partnern
Spektrum-Röntgen-Gamma (SRG) ist eine Raumfahrtmission mit vielen Partnern. Auf russischer Seite sind die Raumfahrtagentur Roskosmos, der Raumfahrtkonzern Lavochkin sowie das Institut für Weltraumforschung der Russischen Akademie der Wissenschaften (IKI) eingebunden. Das deutsche Röntgenteleskop eROSITA wurde mit der Unterstützung des DLR Raumfahrtmanagements vom Max-Planck-Institut für Extraterrestrische Physik in Garching gemeinsam mit dem Leibniz-Institut für Astrophysik Potsdam (AIP) sowie den Universitäten Erlangen-Nürnberg, Hamburg und Tübingen entwickelt und gebaut. Zudem bereiten die Universitäten München und Bonn die wissenschaftliche Auswertung der eROSITA-Daten mit vor.

Die am deutschen Teleskop beteiligten Partnerinstitute haben Software für die Datenanalyse, Missionsplanung und Simulationen erstellt sowie Teile der Hardware beigestellt. Die hauptsächliche Hardwareverantwortung lag aber im Wesentlichen beim MPE. "Normalerweise wird ein derart komplexes Instrument wie eROSITA von einem großen Institut nur mit Hilfe eines industriellen Hauptauftragnehmers umgesetzt. Wir sind aber mit dem MPE gemeinsam einen anderen Weg gegangen und haben das Institut die Entwicklung in Eigenregie durchführen lassen", betont Thomas Mernik.

Projektleitung, Produktsicherung und Systemauslegung waren zentrale Aufgaben, die vom MPE selbst erledigt wurden. Dafür wurden andere Aufgaben von dort an die Industrie vergeben - zum Beispiel für die Spiegelfertigung, die Struktur, die Thermalisolierung, mechanische Präzisionsteile, Elektronikplatinen und vieles mehr. "Da wir eROSITA nun auf seine Reise in den Weltraum schicken, kann man rückblickend sagen, dass dieser Ansatz doch sehr erfolgreich und sinnvoll war", freut sich Thomas Mernik.

Verwandte Meldung bei Raumfahrer.net: Diskutieren Sie mit im Raumcon-Forum:
Twitter: @Raumfahrer_netFacebook Seite Dieser Beitrag ist mir etwas wert: Flattr? | Spenden
 
Navigation
Anzeige
Anzeige

Active Sun

Info
Fine Art Print

bestellen

Nach oben Anzeige - Whirlpool Galaxy © Raumfahrer Net e.V. 2001-2019